
Assertion Based Verification of
AMBA-AHB Using Synopsys VCS®

Akshay Mann, Ashwani Kumar

Abstract-The successof assertion based functional verification depends on the debugging environment associated with it. It
helps user to get information about the environment in a refined manner. It also helps in realizing visualization support which
tracks the behavioral aspects of the design under verification. This paper presents the design and verification of widely used
AdvancedHigh-performanceBus(AHB)protocoloftheAdvancedMicroprocessorBusArchitecture(AMBA) using Assertion Based
Functional Verification approach.This paper contributes as follows: (1) Designing of AMBA AHB protocol using System Verilog
language in Synopsys VCS® tool. (2) Implementing assertion for different components of the design. (3) Functional
verification of the overall design using all the assertions and analyzing the obtained coverage report. Hence, with this
systematic description of the work done, we are able to automatically and completely synthesize and functionally verify an
important and widely used industrial protocol.

Index terms-Functional Verification, Assertion, AMBA AHB, Synopsys VCS®, Functional Coverage.

————————————————————

1 Introduction
HE time taken for verifying the design is
becoming tedious everyday as the complexity

of the chip design is increasing exponentially.
Nowadays, about 70% of the design time is needed
for developing the verification environment [1].
The implementation of reused-based design, where
the main blocks are recycled by using the existing
designs, results in shifting of efforts from the
design field to the verification field. Although, the
present electronic devices have different
functionalities, but the market demands new
functionalities for which more efforts are required
in design and verification from the same device.
Also considering the constrained time-to-market
pressures, new advanced techniques should be
implemented [2]. Hence in this condition, it is
important to reduce the verification time so as to
speed up the whole development process [2]. But,
on the other hand, the complexity of the design
makes it difficult for the engineers to cover all the
corner cases in minimum time. Therefore, to
increase the design observability and to find and
interpret its faults, a new technique is earnestly
needed.

In the verification process, debugging is
divided into three phases. The first step is error
detection, which finds that the design is not
working properly in a particular environment [3].

The second phase is error diagnosis in which the
verification engineer identifies the exact location of
the design which is causing the incorrect behavior
[4]. The third step is error correction, in which the
faulty part of the design is replaced by the
corrected components. In today’s scenario,
Assertion-Based Verification (ABV) has been well
accepted among the design and verification
community as it plays an important role in the
error detection phase [5]. Assertions aim to localize
the failure and thus minimize the effort to locate
the exact reason of the failure. However, assertions
are mainly specified at the signal level, and thus do
not automatically diagnose design behavior at
higher levels of abstraction (phase level,
transaction level) [6].

Assertion-based verification (ABV) is such a
method, which combines assertion, simulation and
formal techniques to the traditional functional
verification [2]. Thispaperdescribesthe
funct i onal
veri f ica ti onoftheAHBprotocoloftheAdvancedMi
croprocessorBusArchitecture(AMBA).Throughoutt
hisworkthe given protocol is functionally verified by
writing assertions for different AHB components.
AMBA AHB architecture basically contains four
different modules (Master, Slave, Arbiter and
Decoder). This paper describes how assertions for

T IJSER

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013
ISSN 2229-5518

58

IJSER © 2013
http://www.ijser.org

http://www.ijser.org/

different components help in the overall functional
verification of the design.

The paper is organized as follows: Section 1
gives the introduction about assertion based
verification and AMBA AHB architecture. Section
2 describes the AMBA AHB architecture and its
different components. Section 3 gives the assertion
based functional verification of AMBA AHB
architecture using assertions for different modules
and overall functional coverage of the design.
Finally, section 4 concludes the work presented in
this paper.

2. AMBA AHB Architecture
A widely used Advanced Microprocessor Bus
Architecture (AMBA) aims at easing the
component design by using the combination of
interchangeable components in the SoC design [7].
It supports the reusability of intellectual property
components, so that a least part of the design can
become a composition.

Fig. 1: AMBA AHB Architecture.

Fig. 1 shows the basic architecture of AMBA

AHB. It consists of four main components- Master,
Slave, Arbiter and Decoder. Arbiter is the main
controlling component in the design. Decoder is
used for decoding the addresses of different slaves.
Master and Slave are used for performing read and
write operations.

2.1 Components of AMBA AHB

1. AHB Master- A master initiates the read and
write operations by providing the address and
control information to the interconnected design
[8]. Only single master can access the system bus at

a time. Fig. 2 shows the schematic of AHB Master.
When access is granted to any of the masters
through Hgrant, address (HADDR) and control
operations are performed. Also other signals like
burst, Htrans, Hready and Hlock signals are
activated to initiate read and write operations in
AHB protocol.

2. AHB Slave- The slave responds to the read and
write operations of the master within the given
address space range [9]. Also, it acknowledges to
the master whether the read and write operations
are successfully implemented. Fig. 3 shows the
schematic of AHB Slave. A particular slave is
selected by sel signal and data write (Hwdata) and
read (Hrdata) operations are performed. The slave
selects the data to be read from signals indata1,
indata2 and indata3. After data is read by the slave
through read signal, it acknowledges to the master
and arbiter by respective signal.

Fig. 2: AHB Master.

IJSER

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013
ISSN 2229-5518

59

IJSER © 2013
http://www.ijser.org

http://www.ijser.org/

Fig. 3: AHB Slave

3. AHB Arbiter- An arbiter is used to grant access
to a particular master for the bus at a time. The
access can be granted to master according to any
arbitration algorithm which decides the priority of
the masters [10]. An AHB includes only single
arbiter that would work as trivial in the single bus
master systems. Fig. 4 shows the schematic of AHB
Arbiter.

Fig. 4: AHB Arbiter.

Fig. 5: AHB Decoder.

An arbiter is used for bus request (Hbusreq) and

bus grant (Hgrant). The arbiter also initiates other
signals like burst, Hready, Hlock, Hbusreq and
Htrans when the master is ready for the data
transfer. Arbiter is the main controlling component
of the AMBA AHB design.

4. AHB decoder- The decoder decodes the
address given by the master and enables the slave
by selecting it to complete the transfer process [11].
A single centralized decoder is needed for all AHB
implementations. Fig. 5 shows the schematic of
AHB Decoder. From the corresponding
addresses(HADDR), a decoder is used to select
slaves (HSELx) from the address signals inaddr1,
inaddr2, inaddr3.

3 Assertion based Functional
Verification
Assertion based functional verification of AMBA
AHB has been done by using twenty assertions.
These assertions are implemented to find the
overall functional coverage of the AMBA AHB
design. First, separate assertions are used for
different components (master, slave, arbiter and
decoder) and their functional coverage is analyzed
from the coverage report. After then, all the
assertions are implemented to find the overall
functional coverage of the design. The analysis of
different components is described below.
3.1 AHB Master-Fig. 6 shows the assertion
example of AHB master. The assertions used here
are concurrent which depends on clock pulse.
Property p7 initially checks the Hready signal and
later on, it asserts Hresp and data_reg signals to be
true. Property p12 checks the Hlock and bus_reg
signals. Property p16 first assert the signal Resetn
and then check other signals like y=idle, data_reg,
bus_reg and count to be zero while property p17
separately checks the Hready signal. Fig. 7 gives
the coverage report obtained after applying master
assertions. The report shows the functional
coverage along with code coverage (line, condition,
toggle, fsm, assert and branch). The assertion
waveform of the assertions and cover points a12,
c12, a16 and c16 are shown in the fig. 8. The
successful assertions are shown with ‘up’ arrows
and failed assertions with ‘down’ arrows.

IJSER

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013
ISSN 2229-5518

60

IJSER © 2013
http://www.ijser.org

http://www.ijser.org/

Fig. 6: Assertion examples for AHB Master.

Fig. 7: Assertion report for AHB Master

Fig. 8: Assertion waveform for AHB Master.

3.2 AHB Slave-The assertions examples for AHB
slave are shown in fig. 9. The assertions used here
are immediate ones which do not require any clock
pulse. First immediate assertion checks the Hresp
signal to be zero while the other assertion checks
Hrdata signal. Fig. 10 shows the assertion report
obtained when slave assertions are used. Since the
immediate assertion are not covered under the
assert coverage, it is shown as zero in the figure.
Also other coverage is also less as compared to all
the component assertions. Fig. 11 shows the
assertion waveform for the assertions check_assert,
cover_ack and read_data_check.

Fig. 9: Assertion examples for AHB Slave

Fig. 10: Assertion report for AHB Slave

Fig. 11: Assertion waveform for AHB Slave

3.3 AHB Arbiter- The assertion examples for most
important component in the AHB protocol, i.e.
AHB Arbiter, are shown in fig. 12. The assertions
used here are concurrent which depends on
positive edge of clock pulse. Property p5 checks
the Hbusreq signal through $rose command, after
that it asserts the grant (g) signal between second
and fifth clock pulse. Property p6 checks the
Hbusreq signal between two adjacent clocks by
$rose command and gives the result between
second and sixth clock pulse while property
gnt_prop checks the grant (g) signal with the same
procedure. Fig. 13 shows the assertion coverage
report for AHB arbiter. As seen from the fig. 13,
arbiter assertions gives the highest functional and
code coverage excluding the toggle coverage. Fig.
14 shows the assertion waveform for the assertions
a6 and a7 with their cover points c6 and c7 where
successful assertions are shown by ‘up’ arrows.

IJSER

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013
ISSN 2229-5518

61

IJSER © 2013
http://www.ijser.org

http://www.ijser.org/

Fig. 12: Assertion examples for AHB Arbiter

Fig. 13: Assertion report for AHB Arbiter

Fig. 14: Assertion waveform for AHB Arbiter

3.4 AHB Decoder-The assertion examples for the
centralized AHB decoder is shown in fig. 15 where
immediate assertions are used. The first assertion
check_addr_assert checks the addresses inaddr1,
inaddr2 and inaddr3 while the second assertion
check_data_assert checks the data indata1, indata2
and indata3. Fig. 16 shows the assertion report for
the AHB decoder which gives the functional and
code coverage for decoder assertions.

Fig. 15: Assertion examples for AHB Decoder

Fig. 16: Assertion report for AHB Decoder

Fig. 17: Assertion waveform for AHB Decoder

The assertions waveform for cover_addr,
check_data_assert and cover_data are shown in fig.
17.

3.5 Functional Coverage of AMBA AHB

The overall functional coverage of AMBA AHB
design using all the assertions is shown in the fig.
18. All twenty assertions are implemented to find
the functional as well as code coverage of the AHB
design. The overall functional coverage is 89.92%
while the line, condition, toggle, fsm, branch and
assert coverage are 99.89%, 84.38%, 76.43%, 100%,
78.85% and 100% respectively.

IJSER

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013
ISSN 2229-5518

62

IJSER © 2013
http://www.ijser.org

http://www.ijser.org/

Fig. 18: Overall functional coverage report of AMBA AHB

Table 1 shows coverage analysis of AMBA AHB

using different number of assertions. From the
table, as the number of assertions increases, the
overall functional and code coverage increases.
Four assertions are used initially giving the
functional coverage 65.23%. As the number of
assertions increase to twenty, the functional
coverage increased to 89.92%.

Table 1: Coverage Analysis table for AMBA AHB

No. of
Asserti

ons

Lin
e
%

Condit
ion %

FS
M
%

Tog
gle
%

Bran
ch
%

Functi
onal %

4 96.
67

64.06 10
0

44.6
6

69.2
3

65.23

7 96.
69

64.06 10
0

44.6
6

69.2
3

74.93

9 96.
73

65.33 10
0

44.6
6

70.1
1

75.01

11 96.
89

68.54 10
0

44.8
3

71.9
7

77.83

13 97.
46

70.31 10
0

44.9
9

73.0
8

80.97

15 97.
48

70.31 10
0

56.9
1

73.0
8

80.98

16 98.
77

75.31 10
0

65.2
0

73.0
8

83.51

17 99.
21

78.54 10
0

69.3
1

74.2
7

85.88

19 99.
54

81.88 10
0

72.4
8

75.5
8

87.08

20 99.
98

84.38 10
0

74.6
7

78.8
5

89.92

4 Conclusion
In this paper, assertion based functional verification
of AMBA with AHB protocol is implemented using
two types of assertions (immediate and concurrent).
Initially, different components of AHB architecture
(master, slave, arbiter and decoder) are described.
After that, assertions are implemented separately for
different components and obtaining their coverage
results. While writing assertions, all the corner cases

have been covered using immediate and concurrent
assertions. For a 32-bit AHB bus, a number of test
cases are required. Therefore, ABV is very helpful at
pinpointing the bugs in the design with less time.
Finally, all assertions are implemented altogether in
the complete AMBA AHB architecture and the overall
functional coverage report is analyzed. The result
shows that the implemented method increases the
observability and coverage of the design. Future work
will focus on improving the functional and code
coverage metric and approaching towards full
coverage of the design.

Acknowledgments:I would like to take this
opportunity to express my gratitude to the people
whose assistance has been invaluable in this paper.

References
[1] YashdeepGodhal, KrishnenduChatterjee, Thomas A.

Henzinger, “Synthesis of AMBA AHB from Formal
Specification: A Case Study”, in International Journal on
Software Tools for Technology Transfer, July 2011.

[2] Yangyang Li, Wuchen Wu, LigangHou, Hao Cheng, “A
Study on the Assertion-Based Verification of Digital
IC”, in Proc. of Second International Conference on
Information and Computing Science, 2009, pp. 25-28.

[3] A. Nandi, B. Pal, N. Chhetan, P. Dasgupta and P. P.
Chakrabarti, “H-DBUG: A High-level Debugging
Framework for Protocol Verification using Assertions”,
in Proc. of IEEE Indicon Conference, 2005, Chennai, India,
pp. 115-118.

[4] Roychoudhury, T. Mitra, S.R. Karri, “Using formal
techniques to Debug the AMBA System-on-Chip Bus
Protocol”, Proc. of IEEE Computer Society of Design,
Automation and Test in Europe, 2003,Munich, Germany,
pp. 828 – 833.

[5] P. Chauhan, E. Clarke, Y. Lu, and D. Wang, “Verifying
IP core based system-on-chip designs”, in Proc. of 12th
Annual IEEE ASIC SOC Conference, 1999, India, pp. 27-
31.

[6] M. Benjamin, D. Geist, A. Hartman, G. Mas, R. Smeets,
and Y. Wolfsthal, “A Study in Coverage-Driven Test
Generation,” in Proc. of 36th Design Automation
Conference (DAC'99), 1999, Los Angeles, USA, pp. 970-
975.

[7] ARM Ltd., AMBA specification (rev. 2) 1999,
http://arm.com/products/solutions/AMBA_Spec.html.

[8] Han Ke, D. Zhongliang, S. Qiong, “Verification of
AMBA Bus Model Using System Verilog”, in Proc. of
IEEE Conference on Electronic Measurement and
Instruments (ICEMI ’07), 2007, Xian, China, pp. 1-776, 1-
780.

[9] Y. Lin, C. C. Wang, I. J. Huang, “AMBA AHB Bus
Protocol Checker with Efficient Debugging
Mechanism”, in Proc. of IEEE International Symposium

IJSER

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013
ISSN 2229-5518

63

IJSER © 2013
http://www.ijser.org

http://www.ijser.org/
http://arm.com/products/solutions/AMBA_Spec.html

on Circuits and Systems (ISCAS 2008), 2008, Washington,
USA, pp. 928 – 931.

[10] M. Conti, M. Caldari, G.B. Vece, S. Orcioni, C.
Turchetti, “Performance Analysis of Different
Arbitration Algorithms of the AMBA AHB Bus”, in
Proc. of IEEE Conference on Design Automation , 2004,
San Diego, USA, pp. 618 – 621.

[11] L. Ivanov and R. Nunna, ‘‘Specification and
formalverification of interconnect bus protocols,’’ in
Proc. of 43rd IEEE Midwest Symposium on Circuits and
Systems, vol. 1, Aug. 2000, pp. 378-382.

IJSER

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013
ISSN 2229-5518

64

IJSER © 2013
http://www.ijser.org

http://www.ijser.org/

	Acknowledgments:I would like to take this opportunity to express my gratitude to the people whose assistance has been invaluable in this paper.

